Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Biomed Microdevices ; 25(3): 21, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-20233873

ABSTRACT

In recent years biomedical scientific community has been working towards the development of high-throughput devices that allow a reliable, rapid and parallel detection of several strains of virus or microparticles simultaneously. One of the complexities of this problem lies on the rapid prototyping of new devices and wireless rapid detection of small particles and virus alike. By reducing the complexity of microfluidics microfabrication and using economic materials along with makerspace tools (Kundu et al. 2018) it is possible to provide an affordable solution to both the problems of high-throughput devices and detection technologies. We present the development of a wireless, standalone device and disposable microfluidics chips that rapidly generate parallel readouts for selected, possible virus variants from a nasal or saliva sample, based on motorized and non-motorized microbeads detection, and imaging processing of the motion tracks of these beads in micrometers. Microbeads and SARS-CoV-2 COVID-19 Delta variant were tested as proof-of-concept for testing the microfluidic cartridges and wireless imaging module. The Microbead Assay (MA) system kit consists of a Wi-Fi readout module, a microfluidic chip, and a sample collection/processing sub-system. Here, we focus on the fabrication and characterization of the microfluidic chip to multiplex various micrometer-sized beads for economic, disposable, and simultaneous detection of up to six different viruses, microparticles or variants in a single test, and data collection using a commercially available, Wi-Fi-capable, and camera integrated device (Fig. 1).


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Humans , Microfluidics , Microspheres , Cost-Benefit Analysis , SARS-CoV-2 , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods
2.
Biosens Bioelectron ; 228: 115213, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2306423

ABSTRACT

Droplet microfluidic technology has revolutionized biomolecular analytical research, as it has the capability to reserve the genotype-to-phenotype linkage and assist for revealing the heterogeneity. Massive and uniform picolitre droplets feature dividing solution to the level that single cell and single molecule in each droplet can be visualized, barcoded, and analyzed. Then, the droplet assays can unfold intensive genomic data, offer high sensitivity, and screen and sort from a large number of combinations or phenotypes. Based on these unique advantages, this review focuses on up-to-date research concerning diverse screening applications utilizing droplet microfluidic technology. The emerging progress of droplet microfluidic technology is first introduced, including efficient and scaling-up in droplets encapsulation, and prevalent batch operations. Then the new implementations of droplet-based digital detection assays and single-cell muti-omics sequencing are briefly examined, along with related applications such as drug susceptibility testing, multiplexing for cancer subtype identification, interactions of virus-to-host, and multimodal and spatiotemporal analysis. Meanwhile, we specialize in droplet-based large-scale combinational screening regarding desired phenotypes, with an emphasis on sorting for immune cells, antibodies, enzymatic properties, and proteins produced by directed evolution methods. Finally, some challenges, deployment and future perspective of droplet microfluidics technology in practice are also discussed.


Subject(s)
Biosensing Techniques , Microfluidic Analytical Techniques , Mycobacterium tuberculosis , Microfluidics/methods , Microbial Sensitivity Tests , Proteins , Microfluidic Analytical Techniques/methods , High-Throughput Screening Assays/methods
3.
Biosensors (Basel) ; 13(2)2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2268792

ABSTRACT

Spread of coronavirus disease 2019 (COVID-19) has significantly impacted the public health and economic sectors. It is urgently necessary to develop rapid, convenient, and cost-effective point-of-care testing (POCT) technologies for the early diagnosis and control of the plague's transmission. Developing POCT methods and related devices is critical for achieving point-of-care diagnosis. With the advantages of miniaturization, high throughput, small sample requirements, and low actual consumption, microfluidics is an essential technology for the development of POCT devices. In this review, according to the different driving forces of the fluid, we introduce the common POCT devices based on microfluidic technology on the market, including paper-based microfluidic, centrifugal microfluidic, optical fluid, and digital microfluidic platforms. Furthermore, various microfluidic-based assays for diagnosing COVID-19 are summarized, including immunoassays, such as ELISA, and molecular assays, such as PCR. Finally, the challenges of and future perspectives on microfluidic device design and development are presented. The ultimate goals of this paper are to provide new insights and directions for the development of microfluidic diagnostics while expecting to contribute to the control of COVID-19.


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Humans , Microfluidics , Point-of-Care Systems , Point-of-Care Testing , Immunoassay , Lab-On-A-Chip Devices
4.
Ageing Res Rev ; 87: 101921, 2023 06.
Article in English | MEDLINE | ID: covidwho-2252164

ABSTRACT

The complex structure of the blood-brain barrier (BBB) hinders its modeling and the treatment of brain diseases. The microfluidic technology promotes the development of BBB-on-a-chip platforms, which can be used to reproduce the complex brain microenvironment and physiological reactions. Compared with traditional transwell technology, microfluidic BBB-on-a-chip shows great technical advantages in terms of flexible control of fluid shear stress in the chip and fabrication efficiency of the chip system, which can be enhanced by the development of lithography and three-dimensional (3D) printing. It is convenient to accurately monitor the dynamic changes of biochemical parameters of individual cells in the model by integrating an automatic super-resolution imaging sensing platform. In addition, biomaterials, especially hydrogels and conductive polymers, solve the limitations of microfluidic BBB-on-a-chip by compounding onto microfluidic chip to provide a 3D space and special performance on the microfluidic chip. The microfluidic BBB-on-a-chip promotes the development of basic research, including cell migration, mechanism exploration of neurodegenerative diseases, drug barrier permeability, SARS-CoV-2 pathology. This study summarizes the recent advances, challenges and future prospects of microfluidic BBB-on-a-chip, which can help to promote the development of personalized medicine and drug discovery.


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Humans , Blood-Brain Barrier , Microfluidics , Microfluidic Analytical Techniques/methods , SARS-CoV-2
5.
Biosensors (Basel) ; 13(2)2023 Feb 07.
Article in English | MEDLINE | ID: covidwho-2237489

ABSTRACT

Recently, infectious diseases, such as COVID-19, monkeypox, and Ebola, are plaguing human beings. Rapid and accurate diagnosis methods are required to preclude the spread of diseases. In this paper, an ultrafast polymerase chain reaction (PCR) equipment is designed to detect virus. The equipment consists of a silicon-based PCR chip, a thermocycling module, an optical detection module, and a control module. Silicon-based chip, with its thermal and fluid design, is used to improve detection efficiency. A thermoelectric cooler (TEC), together with a computer-controlled proportional-integral-derivative (PID) controller, is applied to accelerate the thermal cycle. A maximum of four samples can be tested simultaneously on the chip. Two kinds of fluorescent molecules can be detected by optical detection module. The equipment can detect viruses with 40 PCR amplification cycles in 5 min. The equipment is portable, easily operated, and low equipment cost, which shows great potential in epidemic prevention.


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Nucleic Acids , Viruses , Humans , Silicon , Microfluidics , Polymerase Chain Reaction/methods , Nucleic Acids/analysis , Nucleic Acid Amplification Techniques , Equipment Design
6.
Nat Commun ; 13(1): 4902, 2022 08 20.
Article in English | MEDLINE | ID: covidwho-2031823

ABSTRACT

A lab-on-a-chip system with Point-of-Care testing capability offers rapid and accurate diagnostic potential and is useful in resource-limited settings where biomedical equipment and skilled professionals are not readily available. However, a Point-of-Care testing system that simultaneously possesses all required features of multifunctional dispensing, on-demand release, robust operations, and capability for long-term reagent storage is still a major challenge. Here, we describe a film-lever actuated switch technology that can manipulate liquids in any direction, provide accurate and proportional release response to the applied pneumatic pressure, as well as sustain robustness during abrupt movements and vibrations. Based on the technology, we also describe development of a polymerase chain reaction system that integrates reagent introduction, mixing and reaction functions all in one process, which accomplishes "sample-in-answer-out" performance for all clinical nasal samples from 18 patients with Influenza and 18 individual controls, in good concordance of fluorescence intensity with standard polymerase chain reaction (Pearson coefficients > 0.9). The proposed platform promises robust automation of biomedical analysis, and thus can accelerate the commercialization of a range of Point-of-Care testing devices.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Automation , Humans , Point-of-Care Systems , Point-of-Care Testing , Polymerase Chain Reaction
7.
Biosensors (Basel) ; 12(7)2022 Jul 03.
Article in English | MEDLINE | ID: covidwho-1957223

ABSTRACT

In vitro diagnosis (IVD) has become a hot topic in laboratory research and achievement transformation. However, due to the high cost, and time-consuming and complex operation of traditional technologies, some new technologies are being introduced into IVD, to solve the existing problems. As a result, IVD has begun to develop toward point-of-care testing (POCT), a subdivision field of IVD. The pandemic has made governments and health institutions realize the urgency of accelerating the development of POCT. Microfluidic paper-based analytical devices (µPADs), a low-cost, high-efficiency, and easy-to-operate detection platform, have played a significant role in advancing the development of IVD. µPADs are composed of paper as the core material, certain unique substances as reagents for processing the paper, and sensing devices, as auxiliary equipment. The published reviews on the same topic lack a comprehensive and systematic introduction to µPAD classification and research progress in IVD segmentation. In this paper, we first briefly introduce the origin of µPADs and their role in promoting IVD, in the introduction section. Then, processing and detection methods for µPADs are summarized, and the innovative achievements of µPADs in IVD are reviewed. Finally, we discuss and prospect the upgrade and improvement directions of µPADs, in terms of portability, sensitivity, and automation, to help researchers clarify the progress and overcome the difficulties in subsequent µPAD research.


Subject(s)
Microfluidic Analytical Techniques , Paper , Lab-On-A-Chip Devices , Microfluidics , Point-of-Care Testing
8.
Lab Chip ; 22(14): 2695-2706, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1900680

ABSTRACT

Heterogeneous immunoassays (HI) are an invaluable tool for biomarker detection and remain an ideal candidate for microfluidic point-of-care diagnostics. However, automating and controlling sustained fluid flow from benchtop to microfluidics for the HI reaction during the extended sample incubation step, remains difficult to implement; this leads to challenges for assay integration and assay result interpretation. To address these issues, we investigated the liquid reciprocation process on a microfluidic centrifugal disc (CD) to generate continuous, bidirectional fluid flow using only a rotating motor. Large volumetric flow rates (µL s-1) through the HI reaction chamber were sustained for extended durations (up to 1 h). The CD liquid reciprocation operating behavior was characterized experimentally and simulated to determine fluid flow shear rates through our HI reaction chamber. We demonstrated the continuous CD liquid reciprocation for target molecule incubation for a microarray HI and that higher fluid shear rates negatively influenced our fluorescence intensity. We highlight the importance of proper fluid flow considerations when integrating HIs with microfluidics.


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Biological Assay , Humans , Immunoassay , Microfluidics
9.
Nature ; 605(7910): 464-469, 2022 05.
Article in English | MEDLINE | ID: covidwho-1852427

ABSTRACT

Chain reactions, characterized by initiation, propagation and termination, are stochastic at microscopic scales and underlie vital chemical (for example, combustion engines), nuclear and biotechnological (for example, polymerase chain reaction) applications1-5. At macroscopic scales, chain reactions are deterministic and limited to applications for entertainment and art such as falling dominoes and Rube Goldberg machines. On the other hand, the microfluidic lab-on-a-chip (also called a micro-total analysis system)6,7 was visualized as an integrated chip, akin to microelectronic integrated circuits, yet in practice remains dependent on cumbersome peripherals, connections and a computer for automation8-11. Capillary microfluidics integrate energy supply and flow control onto a single chip by using capillary phenomena, but programmability remains rudimentary with at most a handful (eight) operations possible12-19. Here we introduce the microfluidic chain reaction (MCR) as the conditional, structurally programmed propagation of capillary flow events. Monolithic chips integrating a MCR are three-dimensionally printed, and powered by the free energy of a paper pump, autonomously execute liquid handling algorithms step-by-step. With MCR, we automated (1) the sequential release of 300 aliquots across chained, interconnected chips, (2) a protocol for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) antibodies detection in saliva and (3) a thrombin generation assay by continuous subsampling and analysis of coagulation-activated plasma with parallel operations including timers, iterative cycles of synchronous flow and stop-flow operations. MCRs are untethered from and unencumbered by peripherals, encode programs structurally in situ and can form a frugal, versatile, bona fide lab-on-a-chip with wide-ranging applications in liquid handling and point-of-care diagnostics.


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Humans , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Microfluidics/methods , Polymerase Chain Reaction , SARS-CoV-2/genetics
10.
Talanta ; 242: 122989, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1473494

ABSTRACT

Virus surveillance and discovery are crucial for virus prediction and outbreak preparedness. Virus samples are frequently bulky and complicated so that effective virus detection remain challenging. Herein, we develop an 3D electrostatic microfluidic platform to rapidly and label-free enrich viruses from bulky samples at low concentrations. The platform consists of double microchannels for streamlining large volume processing and electrodes for enriching viruses by electrostatic interaction. The trajectories of simulation show that particle is successfully enriched under different forces of electrostatic field and different sample flow rates. We demonstrate that the electrostatic microfluidic platform can increase the limit of detection in 100-fold higher based on real-time PCR quantified analysis. Our design thus provides a simple, rapid, label-free and high-throughput viruses concentration platform and would thus have significant utility for various viral detection.


Subject(s)
Microfluidic Analytical Techniques , Viruses , DNA Viruses , Electrodes , Microfluidics , Static Electricity
11.
Talanta ; 239: 122974, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1466916

ABSTRACT

Direct RNA detection is critical for providing the RNA insights into gene expression profiling, noncoding RNAs, RNA-associated diseases and pathogens, without reverse transcription. However, classical RNA analysis usually requires RT-PCR, which can cause bias amplification and quantitation errors. To address this challenge, herein we report a microfluidic RNA chip (the microchip prototype) for direct RNA detection, which is primarily based on RNA extension and labeling with DNA polymerase. This detection strategy is of high specificity (discriminating against single-nucleotide differences), rapidity, accuracy, nuclease resistance, and reusability. Further, we have successfully detected disease-associated RNAs in clinical samples, demonstrating its great potentials in biomedical research and clinical diagnosis.


Subject(s)
Microfluidic Analytical Techniques , RNA , Microfluidics , Nucleotides , Oligonucleotide Array Sequence Analysis , RNA/genetics
12.
Lab Chip ; 21(12): 2330-2332, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1415964

ABSTRACT

The search for antibody therapeutic candidates is a timely and important challenge well-suited to lab on a chip approaches. Vancouver-based AbCellera Biologics Inc. developed a microfluidic antibody screening platform, ancillary technologies, and a service-based drug discovery business model that has proved a tremendous success. We take the opportunity here to reflect on what enabled this success. We consider the common lab on a chip motivations that were part of their success, and those that were not.


Subject(s)
Biological Products , Microfluidic Analytical Techniques , Drug Discovery , Lab-On-A-Chip Devices , Microfluidics
13.
ACS Appl Mater Interfaces ; 13(33): 38990-39002, 2021 Aug 25.
Article in English | MEDLINE | ID: covidwho-1351922

ABSTRACT

The ongoing COVID-19 pandemic has clearly established how vital rapid, widely accessible diagnostic tests are in controlling infectious diseases and how difficult and slow it is to scale existing technologies. Here, we demonstrate the use of the rapid affinity pair identification via directed selection (RAPIDS) method to discover multiple affinity pairs for SARS-CoV-2 nucleocapsid protein (N-protein), a biomarker of COVID-19, from in vitro libraries in 10 weeks. The pair with the highest biomarker sensitivity was then integrated into a 10 min, vertical-flow cellulose paper test. Notably, the as-identified affinity proteins were compatible with a roll-to-roll printing process for large-scale manufacturing of tests. The test achieved 40 and 80 pM limits of detection in 1× phosphate-buffered saline (mock swab) and saliva matrices spiked with cell-culture-generated SARS-CoV-2 viruses and is also capable of detection of N-protein from characterized clinical swab samples. Hence, this work paves the way toward the mass production of cellulose paper-based assays which can address the shortages faced due to dependence on nitrocellulose and current manufacturing techniques. Further, the results reported herein indicate the promise of RAPIDS and engineered binder proteins for the timely and flexible development of clinically relevant diagnostic tests in response to emerging infectious diseases.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , Nucleocapsid Proteins/analysis , SARS-CoV-2/chemistry , Biomarkers/analysis , Biosensing Techniques , COVID-19/prevention & control , Cellulose/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Dyes/chemistry , Humans , Microfluidic Analytical Techniques/methods , Peptide Library , Protein Binding
14.
Anal Bioanal Chem ; 413(7): 1787-1798, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1336052

ABSTRACT

Rapid and accurate identification of respiratory tract infection pathogens is of utmost importance for clinical diagnosis and treatment, as well as prevention of pathogen transmission. To meet this demand, a microfluidic chip-based PCR-array system, Onestart, was developed. The Onestart system uses a microfluidic chip packaged with all the reagents required, and the waste liquid is also collected and stored on the chip. This ready-to-use system can complete the detection of 21 pathogens in a fully integrated manner, with sample lysis, nucleic acid extraction/purification, and real-time PCR sequentially implemented on the same chip. The entire analysis process is completed within 1.5 h, and the system automatically generates a test report. The lower limit-of-detection (LOD) of the Onestart assay was determined to be 1.0 × 103 copies·mL-1. The inter-batch variation of cycle threshold (Ct) values ranged from 0.08% to 0.69%, and the intra-batch variation ranged from 0.9% to 2.66%. Analytical results of the reference sample mix showed a 100% specificity of the Onestart assay. The analysis of batched clinical samples showed consistency of the Onestart assay with real-time PCR. With its ability to provide rapid, sensitive, and specific detection of respiratory tract infection pathogens, application of the Onestart system will facilitate timely clinical management of respiratory tract infections and effective prevention of pathogen transmission. Onestart, a ready-to-use system, can detect 21 pathogens in a fully integrated manner on a microchip within 1.5 h.


Subject(s)
Automation , Polymerase Chain Reaction/methods , Respiratory Tract Infections/diagnosis , COVID-19 Testing/methods , Diagnosis, Computer-Assisted , Equipment Design , Humans , Lab-On-A-Chip Devices , Limit of Detection , Microfluidic Analytical Techniques/methods , Microfluidics , Pattern Recognition, Automated , Quality Control , RNA, Viral/analysis , Reproducibility of Results , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/virology , SARS-CoV-2 , Sensitivity and Specificity , Viruses
15.
Biosci Rep ; 41(8)2021 08 27.
Article in English | MEDLINE | ID: covidwho-1334001

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2)-induced infection, the cause of coronavirus disease 2019 (COVID-19), is characterized by unprecedented clinical pathologies. One of the most important pathologies, is hypercoagulation and microclots in the lungs of patients. Here we study the effect of isolated SARS-CoV-2 spike protein S1 subunit as potential inflammagen sui generis. Using scanning electron and fluorescence microscopy as well as mass spectrometry, we investigate the potential of this inflammagen to interact with platelets and fibrin(ogen) directly to cause blood hypercoagulation. Using platelet-poor plasma (PPP), we show that spike protein may interfere with blood flow. Mass spectrometry also showed that when spike protein S1 is added to healthy PPP, it results in structural changes to ß and γ fibrin(ogen), complement 3, and prothrombin. These proteins were substantially resistant to trypsinization, in the presence of spike protein S1. Here we suggest that, in part, the presence of spike protein in circulation may contribute to the hypercoagulation in COVID-19 positive patients and may cause substantial impairment of fibrinolysis. Such lytic impairment may result in the persistent large microclots we have noted here and previously in plasma samples of COVID-19 patients. This observation may have important clinical relevance in the treatment of hypercoagulability in COVID-19 patients.


Subject(s)
COVID-19/pathology , Fibrin/metabolism , Fibrinolysis/physiology , Spike Glycoprotein, Coronavirus/metabolism , Thrombosis/pathology , Adult , Aged , Amyloid/metabolism , Blood Platelets/metabolism , Complement C3/metabolism , Female , Fibrinogen/metabolism , Humans , Lung/pathology , Male , Microfluidic Analytical Techniques , Middle Aged , Prothrombin/metabolism , SARS-CoV-2/metabolism , Thrombosis/virology , Trypsin/metabolism
16.
FASEB J ; 35(8): e21774, 2021 08.
Article in English | MEDLINE | ID: covidwho-1331587

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19), one of the most challenging global pandemics of the modern era. Potential treatment strategies against COVID-19 are yet to be devised. It is crucial that antivirals that interfere with the SARS-CoV-2 life cycle be identified and developed. 3-Chymotrypsin-like protease (3CLpro) is an attractive antiviral drug target against SARS-CoV-2, and coronaviruses in general, because of its role in the processing of viral polyproteins. Inhibitors of 3CLpro activity are screened in enzyme assays before further development of the most promising leads. Dimethyl sulfoxide (DMSO) is a common additive used in such assays and enhances the solubility of assay components. However, it may also potentially affect the stability and efficiency of 3CLpro but, to date, this effect had not been analyzed in detail. Here, we investigated the effect of DMSO on 3CLpro-catalyzed reaction. While DMSO (5%-20%) decreased the optimum temperature of catalysis and thermodynamic stability of 3CLpro, it only marginally affected the kinetic stability of the enzyme. Increasing the DMSO concentration up to 20% improved the catalytic efficiency and peptide-binding affinity of 3CLpro. At such high DMSO concentration, the solubility and stability of peptide substrate were improved because of reduced aggregation. In conclusion, we recommend 20% DMSO as the minimum concentration to be used in screens of 3CLpro inhibitors as lead compounds for the development of antiviral drugs against COVID-19.


Subject(s)
COVID-19/virology , Coronavirus 3C Proteases/metabolism , Dimethyl Sulfoxide/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Viral/drug effects , SARS-CoV-2/enzymology , Computer Simulation , Coronavirus 3C Proteases/genetics , Humans , Microfluidic Analytical Techniques , Peptides/metabolism , Protein Stability
17.
Biosensors (Basel) ; 11(7)2021 Jul 07.
Article in English | MEDLINE | ID: covidwho-1323110

ABSTRACT

Optofluidic flow-through biosensors are being developed for single particle detection, particularly as a tool for pathogen diagnosis. The sensitivity of the biosensor chip depends on design parameters, illumination format (side vs. top), and flow configuration (parabolic, two- and three-dimensional hydrodynamic focused (2DHF and 3DHF)). We study the signal differences between various combinations of these design aspects. Our model is validated against a sample of physical devices. We find that side-illumination with 3DHF produces the strongest and consistent signal, but parabolic flow devices process a sample volume more quickly. Practical matters of optical alignment are also discussed, which may affect design choice.


Subject(s)
Biosensing Techniques/instrumentation , Lab-On-A-Chip Devices , Hydrodynamics , Microfluidic Analytical Techniques
18.
Sci Rep ; 11(1): 14961, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1322501

ABSTRACT

Influenza and other respiratory viruses present a significant threat to public health, national security, and the world economy, and can lead to the emergence of global pandemics such as from COVID-19. A barrier to the development of effective therapeutics is the absence of a robust and predictive preclinical model, with most studies relying on a combination of in vitro screening with immortalized cell lines and low-throughput animal models. Here, we integrate human primary airway epithelial cells into a custom-engineered 96-device platform (PREDICT96-ALI) in which tissues are cultured in an array of microchannel-based culture chambers at an air-liquid interface, in a configuration compatible with high resolution in-situ imaging and real-time sensing. We apply this platform to influenza A virus and coronavirus infections, evaluating viral infection kinetics and antiviral agent dosing across multiple strains and donor populations of human primary cells. Human coronaviruses HCoV-NL63 and SARS-CoV-2 enter host cells via ACE2 and utilize the protease TMPRSS2 for spike protein priming, and we confirm their expression, demonstrate infection across a range of multiplicities of infection, and evaluate the efficacy of camostat mesylate, a known inhibitor of HCoV-NL63 infection. This new capability can be used to address a major gap in the rapid assessment of therapeutic efficacy of small molecules and antiviral agents against influenza and other respiratory viruses including coronaviruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/virology , Influenza, Human/virology , Microbial Sensitivity Tests/instrumentation , Microfluidic Analytical Techniques/instrumentation , Respiratory Mucosa/cytology , Bronchi/cytology , Bronchi/virology , COVID-19/virology , Cell Culture Techniques/instrumentation , Cell Line , Coronavirus/drug effects , Coronavirus Infections/drug therapy , Equipment Design , High-Throughput Screening Assays/instrumentation , Humans , Influenza A virus/drug effects , Influenza, Human/drug therapy , Respiratory Mucosa/virology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/virology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
19.
Talanta ; 235: 122733, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1322356

ABSTRACT

The microfluidic paper-based analytical devices (µPADs) have grown-up swiftly over the decade due to its low cost, simple fabrication procedure, resource-limitedness, non-toxicity and their environmentally benign nature. The µPADs, also identified as point-of-care devices or health care devices have successfully applied in several fields such as diagnostics, biological, food safety, environmental, electrochemical and most importantly colorimetric/fluorimetric sensors, owing to the attractive passive motions of analyte without any external forces. In recent years, a large number of colorimetric and fluorimetric probes have been reported that can selectively recognize the analytes in µPADs. However, there is no organized review on its structure-activity relationship. In this review, we have focused to summarize the colorimetric and fluorimetric probes utilized in µPADs. This review discuss about the relationships between the structure and functions of various probes as signaling units of the efficient µPADs. The probes including nanomaterials, nanozymes, polymers and organic molecules, their structural activity with regard to sensing performances along with their limit of detection are also discussed. This review is expected to assist readers for better understanding of the sensing mechanisms of various chemo and bio-probes utilized in µPADs, as well as promote their advancement in the field. On the other hand, this review also helps the researchers for enhancement of µPADs and paves way for synergistic application of existing molecular probes as an effective diagnostic tool for the worldwide pandemic novel corona virus COVID-19.


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Humans , Lab-On-A-Chip Devices , Microfluidics , Paper , SARS-CoV-2
20.
Mikrochim Acta ; 188(8): 261, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1316284

ABSTRACT

The ongoing global pandemic of SARS-CoV-2 has promoted to develop novel serological testing technologies since they can be effectively complementary to RT-PCR. Here, a new all-fiber Fresnel reflection microfluidic biosensor (FRMB) was constructed through combining all-fiber optical system, microfluidic chip, and multimode fiber bio-probe. The transmission of the incident light and the collection and transmission of Fresnel reflection light are achieved using a single-multi-mode fiber optic coupler (SMFC) without any other optical separation elements. This compact design greatly simplifies the whole system structure and improves light transmission efficiency, which makes it suitable for the label-free, sensitive, and easy-to-use point-of-care testing (POCT) of targets in nanoliter samples. Based on Fresnel reflection mechanism and immunoassay principle, both the SARS-CoV-2 IgM and IgG antibodies against the SARS-CoV-2 spike protein could be sensitively quantified in 7 min using the secondary antibodies-modified multimode fiber bio-probe. The FRMB performs in one-step, is accurate, label-free, and sensitive in situ/on-site detection of SARS-CoV-2 IgM or IgG in serum with simple dilution only. The limits of detection of SARS-CoV-2 IgM and SARS-CoV-2 IgG were 0.82 ng/mL and 0.45 ng/mL, respectively. Based on our proposed theory, the affinity constants of SARS-CoV-2 IgM or IgG antibody and their respective secondary antibodies were also determined. The FRMB can be readily extended as a universal platform for the label-free, rapid, and sensitive in situ/on-site measurement of other biomarkers and the investigation of biomolecular interaction.


Subject(s)
Antibodies, Viral/blood , Biosensing Techniques/methods , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Microfluidic Analytical Techniques/methods , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Humans , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Limit of Detection , SARS-CoV-2/chemistry , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL